
AN INTRODUCTION TO POINT-SET TOPOLOGY:
S1 AS A COMPACT HAUSDORFF TOPOLOGICAL SPACE

MATH61000, MINI-PROJECT

HARVEY WILLIAMS

November 14, 2025

Department of Mathematics, The University of Manchester
1



2 HARVEY WILLIAMS

Abstract. We introduce point-set topology as a generalisation of analysis on R. As

background, we assume knowledge that is usually covered in the first few chapters of an

introductory analysis text such as Spivak’s Calculus (the idea of limits and continuity)

and some familiarity with set operations. The aim is to span a typical first course in

topology with a cohesive subset of what might normally be discussed in a full semester of

lectures. The development of S1 as a compact Hausdorff space will be a central motivating

theme.
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1. Introduction

The point of point-set topology (hereafter referred to simply as topology) is to abstract
analysis on R (or Rn or Cn). Recall that analysis in R studies what it means for two
objects (points, sequences, functions) to be close to one another: the definition of pointwise
continuous functions in R says that a function f is continuous iff we can guarantee f(x)

will be arbitrarily close to f(x0) by restricting x to be sufficiently close to x0.
It might seem that the idea of closeness inherently requires some definition of distance

so we will briefly discuss metric spaces (which abstract the notion of distance). However,
once we have defined topological space, we will see that we can sensibly decide which points
in a set are “close” to each other by specifying what the “open” subsets are. So long as
our prescription for the “open” sets is consistent with the definition of a topology, we will
be able to do analysis on more general sets without reference to distance. Example 3.1.4
gives a context in which the set {Alice,Bob} is “open”. To emphasise this point, I will use
the non-standard naming convention of referring to open sets defined by a metric as being
metric-open and those from a topology simply as open.
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Analysis without reference to distance is precisely what we need to be able to consider
“rubber sheet geometry” which is studied under the name algebraic topology (specifically
homotopy theory and the fundamental group) and addresses questions such as the differ-
ence between the torus (doughnut) and the sphere. Algebraic topology is typically treated
in a second course on topology and will not be studied here. For an introduction to
Algebraic Topology, readers are referred to [Hat02] or [Die08].

2. Metric Spaces

Metric spaces allow us to generalise analysis on R by first abstracting what it means to be
a “distance”. Since topological spaces allow us to generalise analysis on metric spaces and
this is an introduction to topology, we shall discuss metric spaces only briefly — providing
minimal definitions and few examples. For a more thorough treatment of metric spaces,
see e.g. [Sut10].

2.0.1. Definition. Metric space. A metric space is an ordered pair (X, d) where X is a set
(the space) and d is a function d : X ×X → R such that for all x, y, z ∈ X:

(i) d(x, y) ≥ 0 (non-negativity)
(ii) d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)
(iii) d(x, y) = d(y, x) (symmetry)
(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

2.0.2. Example. A metric space on R. We choose the metric d1(x, y) = |x − y| for all
x, y ∈ R where |x| is the usual modulus sign. We verify:

(i) |z| > 0 for all z ∈ R and R is closed under addition
(ii) |x− y| = 0 ⇐⇒ x− y = 0 ⇐⇒ x = y by trichotomy of R (if x < y or y > x then

we obtain a contradiction so x = y)
(iii) If x < y then |x − y| = −(x − y) = (y − x) = |y − x|. The case y < x follows by

relabeling the previous case and if x = y then |x− y| = 0 = |y− x|. By trichotomy
of R we have exhausted all possibilities.

(iv) Let x − z = A, x − y = B, y − z = C and notice A = B + C. Now consider
|A + B|2 = (A + B)2 = A2 + 2AB + B2 ≤ (|A| + |B|)2 since 2AB ≤ |2AB|. This
implies |A+B| ≤ (|A|+ |B|) since both sides are non-negative.

2.0.3. Example. Some metric spaces from R2. We may choose the metric d21(x⃗, y⃗) =

|x1 − y1| + |x2 − y2| and demonstrate that this is indeed a metric in a similar fashion
to the above discussion of (R, d1). However a more natural metric to use in this case is
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the Euclidean metric d2(x⃗, y⃗) =
√

(x1 − y1)2 + (x2 − y2)2 which emphasises the idea that
metrics define distance on a set. Proving the triangle inequality in this case takes more
effort and relies on the Cauchy-Schwarz inequality. For the sake of brevity we will simply
cite [Men03, Ch. 2, Thm. 2.5, Ch. 2, Sec 8] and claim (R2, d2) is a metric space. Notice
that a single set may have more than one metric associated with it — it is the ordered
pairs (R2, d21) and (R2, d2) that define the metric spaces. However, when it is clear what
metric we are using, it is common to refer to the set e.g. R2 synonymously with the pair.

2.0.4. Definition. Open ball. Let (X, d) be a metric space. For any x ∈ X, r ∈ R+ we
define Br(x) := {y ∈ X : d(x, y) < r} to be the open ball of radius r centred at x.

2.0.5. Definition. Metric-open set. A set O ⊂ X is metric-open if for every x ∈ O, ∃δ > 0

such that Bδ(x) ⊆ O. This says that for a set O to be open, every element of O must
have a little bit of space also in O that surrounds the element in all directions — one can
“wiggle” each point a small amount whilst remaining in O.

2.0.6. Example. Open intervals in (R, d1) are metric-open. We define the open interval
(a, b) as being the set {x ∈ R : a < x < b}. For any x ∈ (a, b) then x−a > 0 and b−x > 0.
Let ϵ = min(x − a, b − x) and consider the open ball Bϵ(x) := {y ∈ R : |x − y| < ϵ}.
Now for any y ∈ Bϵ(x) then y − x ≤ |x − y| < ϵ so y < ϵ + x ≤ b − x + x = b. Likewise
x − y ≤ |x − y| < ϵ so y > x − ϵ ≥ x − (x − a) = a. So Bϵ(x) ⊆ (a, b). Since x was
arbitrary we may find such an open ball for any x ∈ (a, b) and conclude (a, b) is open for
any a, b ∈ R, a < b.

2.0.7. Example. Closed intervals in (R, d1) are not metric-open. We define the closed
interval [a, b] as being the set {x ∈ R : a ≤ x ≤ b}. Consider the open ball Bδ(a) :=

{y ∈ R : |a − y| < δ} with δ > 0. Then |a − (a − δ
2
)| = | δ

2
| < δ so (a − δ

2
) ∈ Bδ(a) but

(a − δ
2
) /∈ [a, b] therefore Bδ(a) ̸⊆ [a, b]. Since δ was arbitrary, there are no open balls

around a and [a, b] is not open for any a, b ∈ R, a ≤ b.

2.0.8. Example. Singleton sets in (R, d1) are not metric-open. This is a special case of
example 2.0.7 when a = b.

Note that whether or not a subset O ⊆ X is metric-open depends on the metric associated
with X.
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2.0.9. Example. Singleton sets in (R, d̃) are metric-open for some choice of d̃. In particular
choose:

d̃(x, y) =

0 if x = y

1 if x ̸= y.

Now consider the singleton set {x0} and the open ball Bδ(x0) := {y ∈ R : d̃(x0, y) < δ}
with 1 > δ > 0. We know that x0 ∈ Bδ(x0) since d̃(x0, x0) = 0 < δ. Now consider y ̸= x0

then d̃(x0, y) = 1 > δ so y /∈ Bδ(x0). Therefore Bδ(x0) = {x0} ⊆ {x0}. There are no other
points in {x0} to consider so we are done.

2.0.10. Example. Open balls are metric-open. Let (X, d) be a metric space and consider
an open ball Bϵ(x) for some ϵ > 0 and consider y ∈ Bϵ(x). If y = x then Bϵ(y) ⊆ Bϵ(x). If
y ̸= x then δ = |x− y| < ϵ. Consider a point z in the open ball B(ϵ−δ)(y). By the triangle
inequality, d(x, z) ≤ d(x, y) + d(y, z) < δ + (ϵ − δ) = ϵ so B(ϵ−δ)(y) ⊂ Bϵ(x). Then Bϵ(x)

is metric-open.

3. Topology

3.0.1. Definition. Topological space. A topological space is a set X (the space) together
with a set U ⊆ P(X) (the topology) such that:

(i) ∅, X ∈ U (contains the empty set and the space)
(ii) If Vα ∈ U for all α ∈ A, then

⋃
α∈A Vα ∈ U (closure under arbitrary union)

(iii) If V1, . . . , Vn ∈ U , then
⋂n

i=1 Vi ∈ U (closure under finite intersections)

The elements of X are called points and the elements of U are called open sets of X. We
denote a topological space (X,U) — the ordered pair consisting of the space X and the
topology U . We refer to such a U as a topology on X. As with metric spaces, when the
meaning is clear, it is common to refer to the set X synonymously with the associated
topological space (X,U).

It is important to note that the open sets in a topological space are defined as being exactly
the members of the topology U . These will not necessarily be the same as the open sets
defined in terms of a metric (when X has some associated metric). However, each metric
space does have a natural topology associated with it: the induced topology.

3.1. Constructing Topologies.

3.1.1. Definition. Induced topology. Let (X, d) be a metric space. Then the collection O
consisting of all metric-open sets of X (defined by d) is called an induced topology or the
topology induced by d.
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3.1.2. Proposition. An induced topology is a topology.

Proof.

(i) Consider the empty set ∅. For each of its elements there exists an open ball which
is a subset of the empty set... ..because it has no elements! So ∅ is metric-open.
Now consider the entire space X. Since open balls are defined to be subsets of the
space, any open ball Bδ(x) around a point x ∈ X will be contained in X. That
is to say, we may choose any δ > 0. Then Bδ(x) ⊆ X for any x ∈ X. So X is
metric-open. Note that we are guaranteed x ∈ Bδ(x) ̸= ∅ since x ∈ X (so long as
X ̸= ∅) and d(x, x) = 0 < δ.

(ii) If Vα is metric-open for all α ∈ A then for any x in some Vα there exists δ > 0 such
that Bδ(x) ⊆ Vα. Now consider z ∈

⋃
α∈A Vα =⇒ ∃α s.t. z ∈ Vα. Then there

exists δ > 0 such that Bδ(z) ⊆ Vα ⊆
⋃

α∈A Vα. So
⋃

α∈A Vα is metric-open.
(iii) If Vi is metric-open for all 1 ≤ i ≤ n then for any x in some Vi there exists δ > 0

such that Bδ ⊆ Vi. Now consider z ∈
⋂n

i=1 Vi =⇒ z ∈ Vi for all 1 ≤ i ≤ n. Then
for all 1 ≤ i ≤ n there exists δi > 0 such that Bδi(z) ⊆ Vi. Since n is finite we
may consider the smallest δi and label it δ∗. Then Bδ∗(z) ⊆ Bδi(z) ⊆ Vi for all
1 ≤ i ≤ n. Then Bδ∗(z) ⊆

⋂n
i=1 Vi so

⋂n
i=1 Vi is metric-open.

□

3.1.3. Example. The metric d1 in (R, d1) induces a topology. In example 2.0.2 we showed
that (R, d1) with d1(x, y) = |x−y| is a bona fide metric space. So we may apply proposition
3.1 and conclude that O = {U ∈ P(R) : U is metric-open} is a topology and (R,O) is a
topological space.

In example 2.0.6 we showed that any open interval (a, b) is metric-open in (R, d1)

so (a, b) ∈ O for all a < b. Then consider (− 1
n
, 1
n
) ∈ O for all n ∈ N. Now take⋂

n∈N(−
1
n
, 1
n
) ⊂ R. This is equal to the singleton set {0}. Proof: 0 ∈

⋂
n∈N(−

1
n
, 1
n
) since

for any n ∈ N then − 1
n
< 0 < 1

n
. Also, z /∈

⋂
n∈N(−

1
n
, 1
n
) for any z ̸= 0 in R since for

any z ̸= 0 in R there exists some n in N such that 1
n
< |z| by the Archimedean property.

As shown in example 2.0.8, singleton sets are not metric-open in (R, d1) so {0} /∈ O. This
motivates part (iii) of the definition of a topology, which only requires closure under finite
intersections — taking non-finite intersections often leaves points with no “room to wiggle”.

3.1.4. Example. The course topology C = {∅, X} ⊂ P(X) is a topology:

(i) ∅, X ∈ C
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(ii) If Vα ∈ C then either Vα = ∅ for all α ∈ A so
⋃

α∈A Vα = ∅ ∈ C or Vα = X for some
α ∈ A so

⋃
α∈A Vα = X ∈ C.

(iii) If V1 . . . Vn ∈ C then either Vi = X for all 1 ≤ i ≤ n so
⋂n

i=1 Vi = X ∈ C or Vi = ∅
for some 1 ≤ i ≤ n so

⋂n
i=1 Vi = ∅ ∈ C

The course topology is an example of topologically open sets which are not defined in
terms of metric-open sets. For instance let X = {Alice,Bob}. Then our course topology
C = {∅, {Alice,Bob}}. That is to say {Alice,Bob} is an open set!

One of the windfalls from abstraction is generalisation. So topologically open sets
should allow us to do more than metric-open sets. The course topology may seem silly
— and we will see some more interesting examples in subsections 3.2 and 3.3 — but
the following remark should persuade the reader that the course topology is not “trivial”
(unimportant).

3.1.5. Remark. The course topology is the smallest topology.

Consider a topological space (X,U) and the course topology C = {∅, X}. Then C ⊆ U by
definition of U as a topology since axiom (i) tells us that ∅, X ∈ U . In particular, whenever
we prove that some set U is a topology of X, we should be wary that it might only contain
the elements ∅ and X.

3.1.6. Definition. Subspace topology. Let (X,U) be a topological space and Y ⊆ X. Then
we call the set S := {V ∈ P(Y ) : ∃U ∈ U s.t. U ∩ Y = V } a subspace topology on Y .

3.1.7. Proposition. A subspace topology is a topology

Proof.

(i) ∅ ∈ U and ∅ ∩ Y = ∅ so ∅ ∈ S. Similarly X ∈ U and X ∩ Y = Y so Y ∈ S
(ii) Let Vα ∈ S for all α ∈ A. Then there exists Uα ∈ U such that Vα = Uα ∩ Y for

all α ∈ A. Now consider
⋃

α∈A Vα =
⋃

α∈A(Uα ∩ Y ) = (
⋃

α∈A Uα) ∩ Y . Since U is a
topology then (

⋃
α∈A Uα) ∈ U so

⋃
α∈A Vα ∈ S

(iii) Let V1, . . . , Vn ∈ S. Then there exists Ui ∈ U such that Vi = Ui∩Y for all 1 ≤ i ≤ n.
Now consider

⋂n
i=1 Vi =

⋂n
i=1(Ui ∩ Y ) = (

⋂n
i=1 Ui) ∩ Y . Since U is a topology then

(
⋂n

i=1 Ui) ∈ U so
⋂n

i=1 Vi ∈ S

□

3.1.8. Example. [−1, 1] with the subspace topology from the induced topology of (R, d1).
These is exactly the set of all metric-open (under the d1 metric) subsets of R each inter-
sected with [−1, 1]. A great many of these intersections produce ∅ ⊂ [−1, 1].
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3.1.9. Definition. Product topology. Let (X,U) and (Y,V) be topological spaces. Then
we say subset Z ⊆ X × Y := {(x, y) : x ∈ X, y ∈ Y } is open iff for every ordered pair
(x0, y0) ∈ Z there exist sets Ux0 ∈ U and Vy0 ∈ V with x0 ∈ Ux0 and y0 ∈ Vy0 such that
Ux0 ×Vy0 := {(x, y) : x ∈ Ux0 , y ∈ Vy0} ⊆ Z. The collection of all such Z forms the product
topology KX×Y .

Note that we only require such sets Ux0 and Vy0 to exist for each (x0, y0) ∈ Z — we will
not in general be able to find sets U and V which satisfy this condition for all (x, y) ∈ Z

simultaneously.

3.1.10. Proposition. A product topology KX×Y is a topology.

Proof.

(i) The empty set ∅ is in KX×Y vacuously since there are no ordered pairs in ∅. For
any ordered pair (x0, y0) ∈ X × Y then x0 ∈ X and y0 ∈ Y . We know X ∈ U and
Y ∈ V and also X × Y ⊆ X × Y so X × Y ∈ KX×Y .

(ii) Let Kα ∈ KX×Y for all α ∈ A. Consider (x0, y0) ∈
⋃

α∈A Kα. Then (x0, y0) ∈ Kα

for some α ∈ A so there exists Ux0 ∈ U and Vy0 ∈ V with x0 ∈ Ux0 and y0 ∈ Vx0

such that Ux0 × Vy0 ⊆ Kα ⊆
⋃

α∈A Kα. So
⋃

α∈A Kα ∈ KX×Y .
(iii) Let K1, . . . , Kn ∈ KX×Y . Consider (x0, y0) ∈

⋂n
i=1Ki. Then (x0, y0) ∈ Ki for

all 1 ≤ i ≤ n so there exists Ui,x0 ∈ U and Vi,y0 ∈ V with x0 ∈ Ui,x0 and y0 ∈
Vi,y0 for all 1 ≤ i ≤ n such that Ui,x0 × Vi,y0 ⊆ Ki. Now consider (z1, z2) ∈
(
⋂n

i=1 Ui,x0) × (
⋂n

i=1 Vi,y0) implies z1 ∈ Ui,x0 and z2 ∈ Vi,y0 for all 1 ≤ i ≤ n. Then
(z1, z2) ∈ Ui,x0×Vi,y0 ⊆ Ki for all 1 ≤ i ≤ n so (z1, z2) ∈

⋂n
i=1 Ki. We conclude that

(
⋂n

i=1 Ui,x0) × (
⋂n

i=1 Vi,y0) ⊆
⋂n

i=1 Ki. Since (
⋂n

i=1 Ui,x0) ∈ U and (
⋂n

i=1 Vi,y0) ∈ V
and (x0, y0) ∈ (

⋂n
i=1 Ui,x0)× (

⋂n
i=1 Vi,y0) we are done.

□

3.1.11. Example. Take [−1, 1] with the subspace topology given in example 3.1.8 and form
the product topology on [−1, 1]× [−1, 1] ≡ [−1, 1]2. Recall that open sets in [−1, 1] were
exactly the metric-open sets from (R, d1) each intersected with [−1, 1]. So for the product
product topology, each point (x0, y0) in an open set of [−1, 1]× [−1, 1] is contained in the
direct product of two metric-open sets from (R, d1) (each intersected with [−1, 1]).

We constructed an induced topology on R in example 3.1.3 and from this we derived a
subspace topology on [−1, 1] in example 3.1.8. Above (in example 3.1.11) we formed a
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product topology on [−1, 1]2. We may now venture one step further and (finally) describe
S1. [1]

3.1.12. Example. S1 as a subspace topology of [−1, 1]2. We define S1 := {(x, y) ∈ [−1, 1]2 :

x2+y2 = 1} ⊂ [−1, 1]2. So we may endow it with a subspace topology derived from example
3.1.11.

Once we have a collection of open sets (the topology), we may use them to define closed
sets :

3.1.13. Definition. Closed set. Let (X,U) be a topological space. A set C ∈ P(X) is
closed iff there exists an open set U ∈ U such that C = X \ U .

3.1.14. Example. The empty set ∅ is closed. Let (X,U) be a topological space. Since X

is open and X \X = ∅ then ∅ is closed. Recall that ∅ is also open — so closed does not
mean “not open”. Sets which are both closed and open are sometimes called clopen. Notice
that X is also clopen since X \ ∅ = X.

3.2. The Importance of Being Hausdorff. The Hausdorff property shows its relevance
once we actually start to do some analysis so we will first define convergence in a topological
setting:

3.2.1. Definition. Convergent sequence. A sequence xn → x iff for every open set U with
x ∈ U there exists N such that xn ∈ U for all n > N . That is to say, the sequence {xn}n∈N
converges to x iff given any open set U with x ∈ U then xn is eventually always in U .

3.2.2. Example. { 1
n
}n∈N converges to 0 under the topology induced by (R, d1). For any

open set U in the topology, with 0 ∈ U , there exists Bδ(0) ⊆ U for some δ > 0. By the
Archimedean property of R there exists N such that 0 < 1

n
< δ for all n > N so the

sequence is eventually always in Bδ(0) which is in U .

3.2.3. Definition. Hausdorff space. A topological space (X,U) is Hausdorff iff for every
x1, x2 ∈ X with x1 ̸= x2 there exist open sets U1, U2 ∈ U such that U1 ∩ U2 = ∅

3.2.4. Proposition. If a topological space is Hausdorff then limits of sequences are unique.

Proof. Let (X,U) be a Hausdorff topological space and let xn → x1, xn → x2. Suppose,
for contradiction, that x1 ̸= x2. Then by the definition of Hausdorff, there exist open sets

[1]The reader might wonder why we did not instead endow S1 with a subspace topology from R2 — we
will later see in theorem 3.3.11 that we want the surrounding space to be “compact”.
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U1, U2 with x ∈ U1, x ∈ U2 such that U1 ∩ U2 = ∅. Since xn → x1 then by definition there
is some N1 such that xn ∈ U1 for all n > N1. Likewise xn → x2 implies there is some N2

such that xn ∈ U2 for all n > N2. Then xn ∈ U1 and xn ∈ U2 for all n > max (N1, N2).
Therefore U1 ∩ U2 ̸= ∅ — contradiction. □

Recall that when we prove uniqueness of limits in R, we usually take two candidates x1

and x2 and let the distance between them be 2ϵ = |x2 − x1|. Then we show that elements
in the sequence cannot be less than ϵ away from both x1 and x2. This implicitly constructs
the open balls Bϵ(x1) and Bϵ(x2) with empty intersection.

3.2.5. Example. The induced topology of (R, d1) is Hausdorff. Take x1, x2 ∈ R with
x1 ̸= x2. Let 2ϵ = |x2 − x1|. Then Bϵ(x1) ∩Bϵ(x2) = ∅.

3.2.6. Example. The course topology on a set X containing more than 1 element is
not Hausdorff. Recall example 3.1.4 with X = {Alice,Bob} and the course topology
U = {∅, {Alice,Bob}}. There are no open sets which contain Alice but not Bob. Then
any sequence Alice, Bob, Alice, Alice, Bob, . . . converges to both Alice and Bob.

For a more subtle eaxmple of a non-Hausdorf topology see [Sut10, Ch. 7 Example 7.9, Ch.
11 Example 11.6].

The Hausdorff property is often included in definitions of other spaces such as a “smooth
manifold” [Lee13, p. 3] to ward off undesirable behaviour such as limits not being unique.
However, there are non-trivial classes of topologies which are naturally non-Hausdorff
[DST19, p. 2].

3.2.7. Definition. Continuous function. Let (X,U) and (Y,V) be topological spaces. Let
f : X → Y be a map between them. Then f is continuous iff f−1(V ) is open in X whenever
V is open in Y .

3.2.8. Example. f(x, y) 7→ x2+ y2 is a continuous function between the product topology
of [−1, 1]2 (example 3.1.11) and the induced topology on (R, d1). Denote the product
topology of [−1, 1]2 as ([−1, 1]2,K) and the induced topology on (R, d1) as (R,V). Let
V be an open set in V and consider the point z ∈ V . We may assume 0 ≤ z ≤ 2 as
otherwise the pre-image of z is the empty set which is open in [−1, 1]2 and ∅ ⊆ f−1(V ).
There exists Bϵ(z) ⊆ V for some ϵ > 0. Consider (x0, y0) ∈ f−1(z) and the two open
sets B

(1)
δ (x0) := {x ∈ [−1, 1] : |x0 − x| < δ} and B

(2)
δ (y0) := {y ∈ [−1, 1] : |y0 − y| < δ}

where δ = min{1, ϵ
2(|x0|+|y0|)+2

}. Note that B
(1)
δ and B

(2)
δ are derived from the intersection

of [−1, 1] with true open balls in (R, d1) (which are metric-open sets by example 2.0.10)
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— so these intersections are open sets in the subspace topology on [−1, 1] (but technically
not balls since we haven’t defined them for subspaces).

Now for any (x, y) ∈ B
(1)
δ (x0)× B

(2)
δ (y0) then |x− x0| < δ. This implies |x− x0| < 1

therefore |x| − |x0| ≤ 1 and |x| ≤ |x0| + 1 so |x + x0| ≤ 2|x0| + 1. Similarly |y − y0| < δ

and |y + y0| ≤ 2|y0|+ 1. We now observe:

|f(x, y)− f(x0, y0)| = |(x2 + y2)− (x2
0 + y20)|

= |(x2 − x2
0) + (y2 − y20)|

≤ |x2 − x2
0|+ |y2 − y20|

= |x− x0| |x+ x0|+ |y − y0| |y + y0|

< δ(2|x0|+ 1) + δ(2|y0|+ 1) ≤ ϵ

That is to say f(B
(1)
δ (x0)×B

(2)
δ (y0)) ⊆ Bϵ(z) ⊆ V so B

(1)
δ (x0)×B

(2)
δ (y0) ⊆ f−1(V ). Since

this is true for any z ∈ V we conclude f−1(V ) is open for any open V in (R,U).

3.2.9. Proposition. The pre-image of a closed set is also closed under a continuous func-
tion.

Proof. Let (X,U) and (Y,V) be topological spaces and f : X → Y a continuous function.
For any closed set D ∈ P(Y ) there exists V ∈ V such that D = Y \V . Since f is continuous
then f−1(V ) = U is open in X. Therefore C = f−1(D) = X \ U is closed. □

3.2.10. Example. We see that S1 endowed with the subspace topology in 3.1.12 is closed.
It is the pre-image of the closed set [0, 1] (in the induced topology from (R, d1)) under the
continuous map in example 3.2.8.

3.3. A Finite Discussion of Compactness. Compactness is in some sense like finiteness
but without requiring discreteness.

3.3.1. Definition. Open cover. Let (X,U) be a topological space. An open cover of X is
a subset V ⊆ U such that

⋃
V ∈V V = X. We say V covers X. If W ⊆ V and W also covers

X, then we say W is a subcover of X.

3.3.2. Definition. Compact space. A topological space (X,U) is compact if every open
cover of X has a finite subcover.

3.3.3. Theorem. (Heine-Borel pt.1) The closed interval [−1, 1] is compact.
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Proof. Along the way we will use the method of continuous induction. Suppose V is an
open cover of [−1, 1] and let A = {a ∈ [−1, 1] : [−1, a] has a finite subcover}. Since V
covers [−1, 1] there is some V0 ∈ V containing −1 so V0 covers [−1,−1]. Therefore −1 ∈ A

i.e A is not empty.
Now consider α = supA which is well defined since A is bounded above and not empty.

Suppose, for contradiction, that α < 1. Then α ∈ [−1, 1] and there is some Vα ∈ V such
that α ∈ Vα. Then there exists some Bδ(α) ⊆ Vα. By definition of α as the supremum, we
must have α− δ

2
∈ A i.e. [−1, α− δ

2
] has a finite subcover W . Take W∪{Bδ(α)} and notice

this is a finite subcover of [−1,min(1, α+ δ
2
)] i.e. min(1, α+ δ

2
) ∈ A which contradicts the

definition of α as the supremum of A. So sup(A) = 1.
All that remains is to show sup(A) ∈ A. There is some V1 ∈ V with 1 ∈ V1 so there

exists some ϵ > 0 such that Bϵ(1) ⊆ V1. Since 1 − ϵ
2
< sup(A) then there exists a finite

subcover W∗ of [−1, 1− ϵ
2
]. Then W∗ ∪ {Bϵ(1)} is a finite subcover of [−1, 1]. □

Compactness suggests the space is in some sense “not infinitely large”. In particular we
shall see that a compact induced topology must come from a bounded metric space. But
first we must define what it means to be a bounded metric space — which we omitted in
section 2.

3.3.4. Definition. Bounded metric space. A metric space (X, d) is bounded iff there exists
r ∈ R such that d(x, y) ≤ R for all x, y ∈ X.

3.3.5. Example. (R, d1) is not bounded. For any r ∈ R we can find n ∈ N with n > r

(the Archimedean property of R) so d1(0, n) = n > r.

3.3.6. Proposition. Every compact space is bounded.

Proof. Let (X,U) be a compact induced topology from the metric space (X, d). Take
x ∈ X then {Br(x) : r > 0} covers R since any other point y ∈ X is some finite distance
away. If (X,U) is compact then there exists some finite subcover {Br1(x), . . . , Brn(x)}.
Let r∗ = max{r1, . . . , rn}. Then d(x, y) < r∗ for all y ∈ X. Now for all y, z ∈ X we have
d(y, z) ≤ d(y, x) + d(x, z) < 2r∗ so X is bounded. □

3.3.7. Theorem. (Heine-Borel pt.2) The topology induced by (R, d1) is not compact.

Proof. By contrapositive. Since (R, d1) is not bounded (example 3.3.5) then it’s not com-
pact, by proposition 3.3.6. □

3.3.8. Proposition. If (X,U) and (Y,V) are both compact then the product topology (X ×
Y,KX×Y ) is compact.
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Proof. We need to show that every open cover L ⊆ KX×Y of X × Y has a finite subcover
T . First we consider the special case that every set L in L is of the form L = U ×V where
U ∈ U and V ∈ V . Since L is an open cover then for every (x, y) ∈ X × Y there exists
Lx,y ∈ L with (x, y) ∈ Lx,y and Lx,y = Ux,y ×Vx,y with Ux,y ∈ U and Vx,y ∈ V . Fix x0 ∈ X.
Then Vx0 := {Vx0,y : y ∈ Y } is an open cover of Y . Since Y is compact there exists a finite
subcover {Vx0,y1 , . . . , Vx0,ym}. Now take the finite intersection Ux0 :=

⋂m
j=1 Ux0,yj which is

open in X. Then Lx0 = {Lx0,y1 , . . . , Lx0,ym} covers Ux0 × Y and {Ux0 : x0 ∈ X} is an
open cover of X. Since X is compact, there exists a finite subcover {Ux1 , . . . , Uxn}. Then
T =

⋃n
i=1 Lxi

=
⋃i=n,j=m

i=1,j=1 Lxi,yj is a finite subcover of X × Y .
In the general case, suppose L′ is an open cover of X × Y . For every (x, y) ∈ X × Y

there exists L′
x,y ∈ L′ with (x, y) ∈ L′

x,y. Since L′
x,y is open, there exists Ux,y ∈ U and

Vx,y ∈ V with x ∈ Ux,y and y ∈ Vx,y such that Lx,y = Ux,y × Vx,y ⊆ L′
x,y with (x, y) ∈ Lx,y.

Now {Lx,y : x ∈ X, y ∈ Y } is an open cover of X × Y of the type discussed above. □

3.3.9. Theorem. (Heine-Borel pt.3) The product topology on [−1, 1]2 is compact.

Proof. Theorem 3.3.3 tells us [−1, 1] is compact as a subspace topology of the induced
topology on (R, d1). Proposition 3.3.8 tells us that the product topology of two compact
topologies is also compact. □

3.3.10. Proposition. If (X,U) is a compact topology and C is closed in (X,U) then the
subspace topology (C,S) is compact.

Proof. Suppose V = Vα : α ∈ A is an open cover of C. By the definition of a subspace
topology, for every α ∈ A there exist V ′

α ∈ U such that Vα = V ′
α ∩ C. Note that since V

covers C then C ⊆
⋃

α∈A V ′
α.

Since C is closed then X\C is open. So V ′ = {V ′
α : α ∈ A} ∪X\C is an open cover of

X. Since X is compact, there exists a finite subcover W ′ = {V ′
α1
, . . . , V ′

αn
} ∪X\C. Since

C ∩X\C = ∅ then W = {Vα1 , . . . , Vαn} is a finite subcover of C. □

3.3.11. Theorem. The subspace topology (S1,S) from [−1, 1]2 is compact.

Proof. Example 3.2.10 tell us that S1 is closed in [−1, 1]2, example 3.3.9 tells us that [−1, 1]2

is compact and proposition 3.3.10 tells us that a closed subspace of a compact topology
forms a compact subspace topology. □
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4. Conclusion

We need two more propositions to reach our final goal.

4.0.1. Proposition. Any subspace topology of a Hausdorff space is also Hausdorff.

Proof. Let (X,U) be a Hausdorff topology and (Y,S) a subspace topology with Y ⊆ X.
Consider two distinct points y1, y2 ∈ Y . Since Y ⊆ X then y1, y2 ∈ X. Since X is
Hausdorff, then there exist open sets U1, U2 ∈ U with y1 ∈ U1 and y2 ∈ U2 such that
U1 ∩ U2 = ∅. Then S1 = U1 ∩ C and S2 = U2 ∩ C are open sets in S with y1 ∈ S1 and
Y2 ∈ U2 such that S1 ∩ S2 = ∅. □

4.0.2. Proposition. Any product topology of two Hausdorff spaces is also Hausdorff.

Proof. Let (X,U) and (Y,V) be Hausdorff spaces. Let (X × Y,KX×Y ) be their product
topology. Consider two distinct points (x1, y1) and (x2, y2) in X × Y . Then x1, x2 ∈ X

and y1, y2 ∈ Y . Since X and Y are both Hausdorff, there exist open sets U1, U2 ∈ U and
V1, V2 ∈ V with x1 ∈ U1 and x2 ∈ U2 and y1 ∈ V1 and y2 ∈ V2 such that U1 ∩ U2 = ∅ and
V1 ∩ V2 = ∅. Then K1 = U1 × V1 ⊆ U1 × V1 and K2 = U2 × V2 ⊆ U2 × V2 are open sets in
KX×Y with (x1, y1) ∈ K1 and (x2, y2) ∈ K2 such that K1 ∩K2 = ∅. □

We showed in example 3.2.5 that the induced topology on (R, d1) is Hausdorff. With
proposition 4.0.1 we can show that the subspace topology on [−1, 1] is therefore also
Hausdorff. With proposition 4.0.2 we know that [−1, 1]2 with the product topology is
Hausdorff. Finally, we may apply proposition 4.0.1 again to show that S1 with the subspace
topology from [−1, 1]2 is Hausdorff. Combined with theorem 3.3.11 we conclude that S1

with the subspace topology of [−1, 1]2 is a compact Hausdorff space.
Contrast this with example 3.2.5 and theorem 3.3.7 which tell us that the topology

on R induced by (R, d1) is a non-compact Hausdorff space.
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The proof that the product topology of two compact spaces is also compact has been taken
nearly ad verbum from notes written by Dexter Chua (based on the “Metric and Topo-
logical Spaces” course lectured in 2015 at Cambridge). Most other proofs are the author’s
own since the 16 page limit means that minimal ancillary material can be introduced —
and almost all sources (including Chua’s notes) leave the proof of many propositions as
exercises.

At the time of writing, Dexter Chua’s notes may be found at the Cambridge Student
Run Computing Facility: https://dec41.user.srcf.net/notes/. These are an invaluable re-
source for any reader wanting a broader introduction to point-set topology (or indeed any
other topic covered in a typical undergraduate mathematics degree).
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