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Motivation

Physics is fitting models to data (and ideally making quantifiable predictions of future data).
It is usually straightforward to calculate the likelihood of observing a set of data, assuming
a given model. That is P (D|θ).

However, the quantity we really care about is the posterior P (θ|D). Which is a direct
measure of how “good” the model is given data we have actually observed already. We can
use Bayes’ theorem to relate the two:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(1)

We refer to P (θ) as the prior as it comes from any pre-existing beliefs we have about the
likelihood of the candidate models. This is often taken to be uniform in lieu of any more
reasoned judgment. The denominator P (D) is referred to as the evidence and may be
calculated from the likelihood and prior via the law of total probability/marginalisation:

P (D) =

∫
P (D|θ)P (θ) dθ (2)

Physical Example

Here we provide a sketch of such a situation. Consider that we are observing a supernova,
which is of interest as a “standard candle”. One measurement we might take is its brightness
over time. See figure 1.

We can’t make truly continuous measurement, and instead must take a discrete number
of observations over time. Each of these has some uncertainty associated, in part due to
stochastic processes in the supernova and in part due to error in our measuring devices.
We appeal to the central limit theorem and assume that the total uncertainty σt on each
measurement follows a Gaussian distribution. For simplicity and depending on our goals,
we might also assume that our knowledge of the physics of supernovae is correct and that

1



Figure 1: A rough sketch of supernova brightness over time, with errors. Data is fictitious.

the unknowns are simply some set of parameters (e.g. progenitor mass, temperature, etc.)
which we shall label with the vector θ (with one component for each parameter).

Thus we have a set of observational data Dt for the brightness at different times t and
can calculate expected brightness It(θi) as a function of parameters for each time t. Making
the Gaussian approximation (valid by central limit theorem) we can calculate the likelihood
as

P (D|θ) = normalisation×
∏
t

exp

(
(Dt − It(θ))

2

2σ2
t

)
(3)

We can then plug this into Bayes’ theorem to calculate the posterior and judge how
probable any set of parameters might be, given the data we have observed. If we calculate
the evidence via marginalisation, then we do not need to know the normalisation factor as
it will cancel.

The “obvious” thing to do would be to incrementally adjust the parameters (via gradient
descent) until we find a maximum in the posterior and declare that this is our best guess for
the properties of the supernova progenitor. In this case, we would not need to evaluate the
normalisation nor the evidence — which is good because this is very difficult!

The drawback of the gradient descent approach is that it does not give us any information
about the uncertainty on our parameter estimation (it might also fail to hit the global
maximum). This is where sampling becomes advantageous. In general I(θ) will be some
complicated function that does not have an analytic integral—so we cannot directly calculate
the evidence nor higher order moments such as variance.

If we can obtain a (large) sample of points from our probability distribution, then we
can appeal to the law of large numbers and approximate any property of the distribution.
E.g., as the number of samples becomes large, the sample mean and variance converge to
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the mean and variance of the underlying distribution.

Markov Chain Monte Carlo

If we want to sample from a known probability distribution P (θ) then a naive approach
would be to form a uniform grid of points and “accept” them or “reject” them according
to the probability distribution. The computational cost of doing this scales exponentially
with the number of parameters in θ — and this is usually quite a high number for physical
applications.

A common means to avoid this “curse of dimensionality” is to perform a random walk
that will reflect the underlying distribution. One well-studied form of random walk is the
Markov process, where each step Xt+1 depends only on the previous step Xt. Formally this
is written as

P (Xt+1|Xt) = P (Xr+1|Xt, Xt−1, . . . , X0) (4)

Markov processes are characterised by their transition matrix Qij, which defines the
probability that Xt+1 = state j given Xt = state i [1]. A given transition matrix might have
an associated stationary distribution(s) s such that∑

i

si = 1 and sQ = s (5)

That is to say s is a left-eigenvalue of the transition matrix whose entries represent
probabilities of being in each state. Notably if X0 is distributed according to a stationary
distribution, all following Xt will be distributed according to the stationary distribution.

Existence and uniqueness I

In finite state space, any irreducible (meaning all states always have some probability of
being visited eventually) Markov chain has a unique stationary distribution. Moreover, if
the chain is aperiodic, Xt will eventually converge to this distribution, regardless of X0 [1].
This motivates the continuous case but we really ought to find a corresponding theorem.

Existence and uniqueness II

An alternative condition is detailed balance. Namely if we can find a distribution s (with∑
i si = 1) such that

siqij = sjqji for all i, j (no summation) (6)

then this is a (not necessarily unique) stationary distribution.

Metropolis-Hastings

The goal of Markov Chain Monte Carlo is to engineer the transition matrix Q such that it
has a stationary distribution matching the PDF we want to sample from. The basic idea is
captured in the Metropolis-Hastings algorithm:
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1. Start at position θt = state i.

2. Propose moving to a state j, according to some (unimportant) proposal probability
matrix Pij.

3. Calculate the acceptance probability

aij = min

(
SjPji

SiPij

, 1

)
,

where Sn is the probability of state n according to the desired underlying distribution

4. Set θt+1 = state j with probability aij, otherwise set θt+1 = state i.

5. Repeat

Here the acceptance probability aij acts as the transition matrix Qij we desire. It is
fairly straightforward to show that this Qij obeys detailed balance where s is the underlying
distribution (see Hwang Chapter 12). Thus we have constructed a transition matrix such
that its stationary distribution is the one we want to sample from.

The beauty of this algorithm is that it is mathematically agnostic to our choice of pro-
posal matrix P . In a vanilla implementation of Metropolis-Hastings, we often take it to be
a multivariate-normal which is symmetric and therefore cancels when calculating the accep-
tance probability. We can be sure that the denominator Pij is never 0 as the algorithm would
never propose such a step. However, in the proof of detailed balance, we also rely on Pji

never being 0. This is not easy to guarantee and we will see it have a strong influence on
more sophisticated algorithms.

Hamiltonian Monte Carlo (choosing a sensible P )

The detailed-balance property of the propose-accept method guarantees that our Markov
Chains will eventually converge to the desired distribution. However, our choice of the
proposal matrix P influences how quickly this will happen. Basic Metropolis-Hastings using
a multivariate-normal proposal probability performs a Brownian random walk on the state-
space and moves a distance proportional to

√
N with N the number of steps.

One improvement on this is the Hamiltonian Monte Carlo (HMC) method. This makes
use of Hamiltonian dynamics as follows:

1. Start at “position” θt = state i.

2. Randomly draw a “momentum” p from a 0-centered Gaussian with covariance matrix
M (usually equal to identity)

3. Compute the “Hamiltonian”

H =
1

2
pM−1p− log(P (θ))

and integrate its motion according to Hamiltonian dynamics. This is done using
Størmer–Verlet integration with step size ϵ and number of steps L.
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4. Calculate the acceptance probability aij as

min (exp(H(previous step)−H(proposed step), 1) .

5. Set θt+1 = state j with probability aij, otherwise set θt+1 = state i.

6. Repeat

Note that the acceptance probability in HMC is exactly the same as in the Metropolis-
Hastings algorithm: when one works through everything the logs, exponentials and inner-
products give us aij = min(

SjPji

SiPij
, 1) as before. The difference now is that our step size

is typically much larger and we no longer move diffusively. Conservation of the Hamilto-
nian during motion means that, provided our momentum variance is low, we expect a high
acceptance rate for proposed steps.

The HMC method has two major drawbacks: practitioners must manually choose the
“hyperparameters” ϵ and L and there might be “wasted effort” by integrating paths of
motion that loop back on themselves. The second of these issues is addressed by the No-U-
Turn sampler.

The No-U-Turn Sampler

The goal of the No-U-Turn sampler is to avoid U-Turns. Duh! This is defined by stopping the
integration of motion when the distance between the two ends starts to decrease. In practice
this is calculated by checking the sign of the dot product between the current momentum
and the end-to-end displacement vector. Supposedly [2] this breaks detailed balance —
presumably by causing situations where Pji = 0 and Pij ̸= 0. The solution is to integrate the
motion with respect to time in both directions, alternating direction with a 50% chance of
moving forward in time from the most advanced end and a 50% chance of moving backward
in time from the least advanced (in time) end. Between each potential change of direction,
the integrator proceeds for twice as many integration steps building a balanced binary-tree.
When certain stopping conditions are met, we stop the integration and are left with a binary
tree of candidate sample points as leaf-nodes. For any of these candidates, the tree we
have is one of 2k possible unique trees that we could have formed if we had started at that
node (where k is the depth of the tree). To see this, note that any possible tree formed
from a starting node is uniquely characterized by the k forward or backward directions we
integrate. From this we can form a binary number using 1 for forward and 0 for backward.
Therefore each tree has probability 1/(2k) of occurring given we started at one of its leaf
nodes. All we need to do to ensure detailed balance is to exclude any leaf-nodes that would
have resulted in earlier termination had we started there. This is kept track of while the tree
is built. Finally we draw a proposed step uniformly from these leaf nodes and calculate the
acceptance probability as usual.

What about the bouncing?

Some regions of parameter space can be excluded from our search (they have 0 probability)
for physical or symmetry or observational reasons. Traditionally this is included into HMC
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using “soft” barriers which smoothly decrease the probability to 0 in the excluded regions.
An alternative is for our Markov Chain to “bounce” off these regions analogously to a particle
bouncing off a hard barrier. Because of the finite integration size, there is 0 probability of
the chain landing exactly on the boundary. Instead, it will get sufficiently close that the
next proposal lies beyond the boundary. Therefore we calculate reflection according to the
nearest surface-normal.

If we label the forward direction as North and the reverse direction as South, and label
reflection in the usual sense as one of East or West then reflection in the perpendicular
plane will be West/East respectively. Supposing a forward (North) proposal would be in an
excluded region, we hope [3] (but have not yet proved) that at most one of East or West
will be a valid proposal direction. Otherwise a chain passing through the same point in the
East-West direction would never be diverted to the North-South direction and this would
clearly break detailed balance. If possible, we move East/West when North is excluded.
However, it might be that neither East nor West is a valid proposal direction, in which case
we propose a Southward step (doubling back on ourselves).

Work done so far

See the below images and captions for a discussion of work completed so far implementing
a HMC sampler.

Figure 2: Here we see the underlying distribution we want to sample from. It is a 2D
Gaussian with variances 1 and covariance 0.5.
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Figure 3: Here we see the result of HMC sampling generating 1000 samples. The circles are
our sample points and the curves are the Hamiltonian trajectories followed in the proposal
step. Darker colours represent the early steps in the chain and lighter colours later steps.
We can see that all colours are spread across a wide range of parameters.

Figure 4: Here we see the limiting case as integration length L is reduced. We effectively
have standard Metropolis-Hastings. Notice that colours are clumped as the chain slowly
diffuses.
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Figure 5: Here we see the limiting case as integration length L is increased. Notice the
doubling-back. We might naively expect elliptical outlines but we are reminded of Lissajous
figures which arise from independent oscillators.

Next steps

1. Implement bouncing

2. Implement No U-Turn

3. Find continuous version of detailed balance theorem

4. Derive why a naive version of the No-U-Turn breaks detailed balance

5. Mathematically confirm that we expect to see Lissajous figures for large L

6. Implement an adaptive method to tune ϵ

7. Test more-physical examples — e.g. masked supernovae problems, which induce sharp
cutoff regions in parameter fits
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